Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Curr Biol ; 34(6): R257-R259, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531322

RESUMO

While we understand how the five main sensory organs enable and facilitate stimulus detection, little is known about how the vomeronasal organ enables pheromone sensation. A new study finds specialized muscles poised to coordinate stimulus delivery, dynamics, and arousal.


Assuntos
Feromônios , Órgão Vomeronasal , Neurobiologia , Sensação/fisiologia , Órgão Vomeronasal/fisiologia , Músculos
2.
Curr Biol ; 34(6): 1206-1221.e6, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320553

RESUMO

The physiological performance of any sensory organ is determined by its anatomy and physical properties. Consequently, complex sensory structures with elaborate features have evolved to optimize stimulus detection. Understanding these structures and their physical nature forms the basis for mechanistic insights into sensory function. Despite its crucial role as a sensor for pheromones and other behaviorally instructive chemical cues, the vomeronasal organ (VNO) remains a poorly characterized mammalian sensory structure. Fundamental principles of its physico-mechanical function, including basic aspects of stimulus sampling, remain poorly explored. Here, we revisit the classical vasomotor pump hypothesis of vomeronasal stimulus uptake. Using advanced anatomical, histological, and physiological methods, we demonstrate that large parts of the lateral mouse VNO are composed of smooth muscle. Vomeronasal smooth muscle tissue comprises two subsets of fibers with distinct topography, structure, excitation-contraction coupling, and, ultimately, contractile properties. Specifically, contractions of a large population of noradrenaline-sensitive cells mediate both transverse and longitudinal lumen expansion, whereas cholinergic stimulation targets an adluminal group of smooth muscle fibers. The latter run parallel to the VNO's rostro-caudal axis and are ideally situated to mediate antagonistic longitudinal constriction of the lumen. This newly discovered arrangement implies a novel mode of function. Single-cell transcriptomics and pharmacological profiling reveal the receptor subtypes involved. Finally, 2D/3D tomography provides non-invasive insight into the intact VNO's anatomy and mechanics, enables measurement of luminal fluid volume, and allows an assessment of relative volume change upon noradrenergic stimulation. Together, we propose a revised conceptual framework for mouse vomeronasal pumping and, thus, stimulus sampling.


Assuntos
Órgão Vomeronasal , Camundongos , Animais , Órgão Vomeronasal/fisiologia , Mamíferos , Feromônios/fisiologia
3.
J Comp Neurol ; 532(2): e25545, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849047

RESUMO

In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.


Assuntos
Complexo Nuclear Corticomedial , Órgão Vomeronasal , Animais , Feminino , Masculino , Bulbo Olfatório/fisiologia , Órgão Vomeronasal/fisiologia , Caracteres Sexuais , Neurônios GABAérgicos
4.
BMC Biol ; 21(1): 152, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424020

RESUMO

BACKGROUND: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS: We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS: Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.


Assuntos
Órgão Vomeronasal , Camundongos , Animais , Órgão Vomeronasal/fisiologia , Lipopolissacarídeos , Encéfalo , Células Receptoras Sensoriais , Inflamação
5.
Brain Behav ; 13(4): e2893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36860170

RESUMO

INTRODUCTION: Contactin-6 (CNTN6), also known as NB-3, is a neural recognition molecule and a member of the contactin subgroup of the immunoglobulin superfamily. Gene encoding CNTN6 is expressed in many regions of the neural system, including the accessory olfactory bulb (AOB) in mice. We aim to determine the effect of CNTN6 deficiency on the function of the accessory olfactory system (AOS). METHODS: We examined the effect of CNTN6 deficiency on the reproductive behavior of male mice through behavioral experiments such as urine sniffing and mate preference tests. Staining and electron microscopy were used to observe the gross structure and the circuitry activity of the AOS. RESULTS: Cntn6 is highly expressed in the vomeronasal organ (VNO) and the AOB, and sparsely expressed in the medial amygdala (MeA) and the medial preoptic area (MPOA), which receive direct and/or indirect projections from the AOB. Behavioral tests to examine reproductive function in mice, which is mostly controlled by the AOS, revealed that Cntn6-/- adult male mice showed less interest and reduced mating attempts toward estrous female mice in comparison with their Cntn6+/+ littermates. Although Cntn6-/- adult male mice displayed no obvious changes in the gross structure of the VNO or AOB, we observed the increased activation of granule cells in the AOB and the lower activation of neurons in the MeA and the MPOA as compared with Cntn6+/+ adult male mice. Moreover, there were an increased number of synapses between mitral cells and granule cells in the AOB of Cntn6-/- adult male mice as compared with wild-type controls. CONCLUSION: These results indicate that CNTN6 deficiency affects the reproductive behavior of male mice, suggesting that CNTN6 participated in normal function of the AOS and its ablation was involved in synapse formation between mitral and granule cells in the AOB, rather than affecting the gross structure of the AOS.


Assuntos
Moléculas de Adesão Celular Neuronais , Bulbo Olfatório , Comportamento Sexual Animal , Animais , Feminino , Masculino , Camundongos , Neurogênese , Neurônios/fisiologia , Órgão Vomeronasal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo
6.
Neuron ; 110(15): 2455-2469.e8, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35654036

RESUMO

The pheromonal information received by the vomeronasal system plays a crucial role in regulating social behaviors such as aggression in mice. Despite accumulating knowledge of the brain regions involved in aggression, the specific vomeronasal receptors and the exact neural circuits responsible for pheromone-mediated aggression remain unknown. Here, we identified one murine vomeronasal receptor, Vmn2r53, that is activated by urine from males of various strains and is responsible for evoking intermale aggression. We prepared a purified pheromonal fraction and Vmn2r53 knockout mice and applied genetic tools for neuronal activity recording, manipulation, and circuit tracing to decipher the neural mechanisms underlying Vmn2r53-mediated aggression. We found that Vmn2r53-mediated aggression is regulated by specific neuronal populations in the ventral premammillary nucleus and the ventromedial hypothalamic nucleus. Together, our results shed light on the hypothalamic regulation of male aggression mediated by a single vomeronasal receptor.


Assuntos
Agressão , Órgão Vomeronasal , Agressão/fisiologia , Animais , Hipotálamo , Masculino , Camundongos , Neurônios/fisiologia , Feromônios/fisiologia , Núcleo Hipotalâmico Ventromedial , Órgão Vomeronasal/fisiologia
7.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35487703

RESUMO

Adaptation plays an important role in sensory systems as it dynamically modifies sensitivity to allow the detection of stimulus changes. The vomeronasal system controls many social behaviors in most mammals by detecting pheromones released by conspecifics. Stimuli activate a transduction cascade in vomeronasal neurons that leads to spiking activity. Whether and how these neurons adapt to stimuli is still debated and largely unknown. Here, we measured short-term adaptation performing current-clamp whole-cell recordings by using diluted urine as a stimulus, as it contains many pheromones. We measured spike frequency adaptation in response to repeated identical stimuli of 2-10 s duration that was dependent on the time interval between stimuli. Responses to paired current steps, bypassing the signal transduction cascade, also showed spike frequency adaptation. We found that voltage-gated Na+ channels in VSNs undergo slow inactivation processes. Furthermore, recovery from slow inactivation of voltage-gated Na+ channels occurs in several seconds, a time scale similar to that measured during paired-pulse adaptation protocols, suggesting that it partially contributes to short-term spike frequency adaptation. We conclude that vomeronasal neurons do exhibit a time-dependent short-term spike frequency adaptation to repeated natural stimuli and that slow inactivation of Na+ channels contributes to this form of adaptation. These findings not only increase our knowledge about adaptation in the vomeronasal system, but also raise the question of whether slow inactivation of Na+ channels may play a role in other sensory systems.


Assuntos
Canais de Sódio , Órgão Vomeronasal , Potenciais de Ação/fisiologia , Animais , Mamíferos/metabolismo , Técnicas de Patch-Clamp , Feromônios , Células Receptoras Sensoriais/metabolismo , Sódio/metabolismo , Canais de Sódio/fisiologia , Órgão Vomeronasal/fisiologia
8.
Nat Commun ; 12(1): 5286, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489431

RESUMO

Vomeronasal information is critical in mice for territorial behavior. Consequently, learning the territorial spatial structure should incorporate the vomeronasal signals indicating individual identity into the hippocampal cognitive map. In this work we show in mice that navigating a virtual environment induces synchronic activity, with causality in both directionalities, between the vomeronasal amygdala and the dorsal CA1 of the hippocampus in the theta frequency range. The detection of urine stimuli induces synaptic plasticity in the vomeronasal pathway and the dorsal hippocampus, even in animals with experimentally induced anosmia. In the dorsal hippocampus, this plasticity is associated with the overexpression of pAKT and pGSK3ß. An amygdalo-entorhino-hippocampal circuit likely underlies this effect of pheromonal information on hippocampal learning. This circuit likely constitutes the neural substrate of territorial behavior in mice, and it allows the integration of social and spatial information.


Assuntos
Tonsila do Cerebelo/fisiologia , Região CA1 Hipocampal/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Comportamento Espacial/fisiologia , Órgão Vomeronasal/fisiologia , Tonsila do Cerebelo/citologia , Animais , Anosmia/genética , Anosmia/metabolismo , Anosmia/fisiopatologia , Comportamento Animal , Região CA1 Hipocampal/citologia , Feminino , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Aprendizagem/fisiologia , Masculino , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Feromônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Percepção Social , Percepção Espacial/fisiologia , Ritmo Teta/fisiologia , Órgão Vomeronasal/citologia
9.
FASEB J ; 35(9): e21806, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369605

RESUMO

During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Animais Recém-Nascidos/genética , Expressão Gênica/genética , Lactação/genética , Comportamento Materno/fisiologia , Animais , Feminino , Hormônios/genética , Camundongos , Modelos Animais , Gravidez , Receptores Odorantes/genética , Órgão Vomeronasal/fisiologia
10.
Cell Tissue Res ; 383(1): 367-386, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33433690

RESUMO

Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.


Assuntos
Feromônios/fisiologia , Órgão Vomeronasal/fisiologia , Animais
11.
Sci Rep ; 10(1): 19943, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203885

RESUMO

Behaviors are shaped by hormones, which may act either by changing brain circuits or by modifying sensory detection of relevant cues. Pup-directed behaviors have been previously shown to change via action of hormones at the brain level. Here, we investigated hormonal control of pup-induced activity in the vomeronasal organ, an olfactory sensory structure involved in the detection of non-volatile chemosignals. Vomeronasal activity decreases as males switch from a pup-aggressive state to a non-aggressive parenting state, after they socially contact a female. RNA sequencing, qPCR, and in situ hybridization were used to identify expression, in the vomeronasal sensory epithelium, of candidate GPCR hormone receptors chosen by in silico analyses and educated guesses. After identifying that oxytocin and vasopressin receptors are expressed in the vomeronasal organ, we injected the corresponding hormones in mice and showed that oxytocin administration reduced both pup-induced vomeronasal activity and aggressive behavior. Conversely, injection of an oxytocin receptor antagonist in female-primed male animals, which normally exhibit reduced vomeronasal activity, significantly increased the number of active vomeronasal neurons. These data link oxytocin to the modulation of olfactory sensory activity, providing a possible mechanism for changes in male behavior after social experience with females.


Assuntos
Agressão/fisiologia , Biomarcadores/análise , Ocitócicos/farmacologia , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Órgão Vomeronasal/fisiologia , Agressão/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Ocitócicos/administração & dosagem , Ocitocina/administração & dosagem , RNA-Seq , Órgão Vomeronasal/efeitos dos fármacos
12.
Neuron ; 108(4): 763-774.e6, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32961129

RESUMO

The hypothalamus regulates innate social interactions, but how hypothalamic neurons transduce sex-related sensory signals emitted by conspecifics to trigger appropriate behaviors remains unclear. Here, we addressed this issue by identifying specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. By in vivo recording of neuronal activities in behaving mice, we showed that neurons expressing dopamine transporter (DAT+) in the ventral premammillary nucleus (PMv) of the hypothalamus responded to male urine cues in a vomeronasal organ (VNO)-dependent manner in naive males. Retrograde trans-synaptic tracing further revealed a specific group of neurons in the bed nucleus of the stria terminalis (BNST) that convey male-relevant signals from VNO to PMv. Inhibition of PMvDAT+ neurons abolished the preference for male urine cues and reduced inter-male attacks, while activation of these neurons promoted urine marking and aggression. Thus, PMvDAT+ neurons exemplify a hypothalamic node that transforms sex-related chemo-signals into recognition and behaviors.


Assuntos
Agressão/psicologia , Sinais (Psicologia) , Hipotálamo Posterior/fisiologia , Neurônios/fisiologia , Urina/fisiologia , Agressão/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Feminino , Masculino , Camundongos , Ratos , Núcleos Septais/fisiologia , Órgão Vomeronasal/fisiologia
13.
J Neurosci ; 40(27): 5247-5263, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32503886

RESUMO

The accessory olfactory bulb (AOB), the first neural circuit in the mouse accessory olfactory system, is critical for interpreting social chemosignals. Despite its importance, AOB information processing is poorly understood compared with the main olfactory bulb (MOB). Here, we sought to fill gaps in the understanding of AOB interneuron function. We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study chemosensory tuning in AOB external granule cells (EGCs), interneurons hypothesized to broadly inhibit activity in excitatory mitral cells (MCs). In ex vivo preparations from mice of both sexes, we measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was sparser, not broader, than upstream MCs. Simultaneous electrophysiological recording and Ca2+ imaging showed no differences in GCaMP6f-to-spiking relationships in these cell types during simulated sensory stimulation, suggesting that measured EGC sparseness was not due to cell type-dependent variability in GCaMP6f performance. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was far broader than indicated by GCaMP6f Ca2+ imaging, and that monomolecular ligands rarely elicited EGC spiking. These results indicate that EGCs are selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.SIGNIFICANCE STATEMENT The mouse accessory olfactory system (AOS) interprets social chemosignals, but we poorly understand AOS information processing. Here, we investigate the functional properties of external granule cells (EGCs), a major class of interneurons in the accessory olfactory bulb (AOB). We hypothesized that EGCs, which are densely innervated by excitatory mitral cells (MCs), would show broad chemosensory tuning, suggesting a role in divisive normalization. Using ex vivo GCaMP6f imaging, we found that EGCs were instead more sparsely tuned than MCs. This was not due to weaker GCaMP6f signaling in EGCs than in MCs. Instead, we found that many MC-activating chemosignals caused only subthreshold EGC responses. This indicates a different role for AOB EGCs compared with analogous cells in the main olfactory bulb.


Assuntos
Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Animais , Cálcio/fisiologia , Grânulos Citoplasmáticos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Odorantes , Técnicas de Patch-Clamp , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia
14.
Sci Rep ; 10(1): 894, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965032

RESUMO

Pheromone detection by the vomeronasal organ (VNO) mediates important social behaviors across different species, including aggression and sexual behavior. However, the relationship between vomeronasal function and social hierarchy has not been analyzed reliably. We evaluated the role of pheromone detection by receptors expressed in the apical layer of the VNO such as vomeronasal type 1 receptors (V1R) in dominance behavior by using a conditional knockout mouse for G protein subunit Gαi2, which is essential for V1R signaling. We used the tube test as a model to analyze the within-a-cage hierarchy in male mice, but also as a paradigm of novel territorial competition in animals from different cages. In absence of prior social experience, Gαi2 deletion promotes winning a novel social competition with an unfamiliar control mouse but had no effect on an established hierarchy in cages with mixed genotypes, both Gαi2-/- and controls. To further dissect social behavior of Gαi2-/- mice, we performed a 3-chamber sociability assay and found that mutants had a slightly altered social investigation. Finally, gene expression analysis in the medial prefrontal cortex (mPFC) for a subset of genes previously linked to social status revealed no differences between group-housed Gαi2-/- and controls. Our results reveal a direct influence of pheromone detection on territorial dominance, indicating that olfactory communication involving apical VNO receptors like V1R is important for the outcome of an initial social competition between two unfamiliar male mice, whereas final social status acquired within a cage remains unaffected. These results support the idea that previous social context is relevant for the development of social hierarchy of a group. Overall, our data identify two context-dependent forms of dominance, acute and chronic, and that pheromone signaling through V1R receptors is involved in the first stages of a social competition but in the long term is not predictive for high social ranks on a hierarchy.


Assuntos
Comportamento Competitivo/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Córtex Pré-Frontal/fisiologia , Órgão Vomeronasal/citologia , Animais , Comportamento Animal , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Feromônios , Predomínio Social , Órgão Vomeronasal/fisiologia
15.
Anat Rec (Hoboken) ; 303(2): 318-329, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30614661

RESUMO

The colonial naked mole rat Heterocephalus glaber is a subterranean, eusocial rodent. The H. glaber vomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine if H. glaber shares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth-associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadult H. glaber individuals. VNE volume measurements on a small sample of Cryptomys hottentotus and Fukomys damarensis indicate that the VNE of those African mole rat species are also likely to be growth-deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells. In this respect, the VNO of H. glaber does not appear vestigial. The African mole rat VNE may be unusually variable, perhaps reflecting reduced selection pressure on the vomeronasal system. If so, African mole rats may provide a useful genetic model for understanding the morphological variability observed in the mammalian VNO. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:318-329, 2020. © 2019 American Association for Anatomy.


Assuntos
Ratos-Toupeira/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Animais , Ratos-Toupeira/fisiologia , Neurônios/fisiologia , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/fisiologia , Órgão Vomeronasal/fisiologia
16.
Genes Brain Behav ; 19(2): e12618, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31634411

RESUMO

We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.


Assuntos
Condutos Olfatórios/fisiologia , Feromônios/fisiologia , Olfato/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Odorantes , Bulbo Olfatório/fisiologia , Atrativos Sexuais/metabolismo , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Órgão Vomeronasal/fisiologia
17.
J Neurosci ; 40(2): 311-326, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31767679

RESUMO

During mammalian development, gonadotropin-releasing-hormone-1 neurons (GnRH-1ns) migrate from the developing vomeronasal organ (VNO) into the brain asserting control of pubertal onset and fertility. Recent data suggest that correct development of the olfactory ensheathing cells (OEC) is imperative for normal GnRH-1 neuronal migration. However, the full ensemble of molecular pathways that regulate OEC development remains to be fully deciphered. Loss-of-function of the transcription factor Gli3 is known to disrupt olfactory development, however, if Gli3 plays a role in GnRH-1 neuronal development is unclear. By analyzing Gli3 extra-toe mutants (Gli3Xt/Xt), we found that Gli3 loss-of-function compromises the onset of achaete-scute family bHLH transcription factor 1 (Ascl-1)+ vomeronasal progenitors and the formation of OEC in the nasal mucosa. Surprisingly, GnRH-1 neurogenesis was intact in Gli3Xt/Xt mice but they displayed significant defects in GnRH-1 neuronal migration. In contrast, Ascl-1null mutants showed reduced neurogenesis for both vomeronasal and GnRH-1ns but less severe defects in OEC development. These observations suggest that Gli3 is critical for OEC development in the nasal mucosa and subsequent GnRH-1 neuronal migration. However, the nonoverlapping phenotypes between Ascl-1 and Gli3 mutants indicate that Ascl-1, while crucial for GnRH-1 neurogenesis, is not required for normal OEC development. Because Kallmann syndrome (KS) is characterized by abnormal GnRH-1ns migration, we examined whole-exome sequencing data from KS subjects. We identified and validated a GLI3 loss-of-function variant in a KS individual. These findings provide new insights into GnRH-1 and OECs development and demonstrate that human GLI3 mutations contribute to KS etiology.SIGNIFICANCE STATEMENT The transcription factor Gli3 is necessary for correct development of the olfactory system. However, if Gli3 plays a role in controlling GnRH-1 neuronal development has not been addressed. We found that Gli3 loss-of-function compromises the onset of Ascl-1+ vomeronasal progenitors, formation of olfactory ensheathing cells in the nasal mucosa, and impairs GnRH-1 neuronal migration to the brain. By analyzing Ascl-1null mutants we dissociated the neurogenic defects observed in Gli3 mutants from lack of olfactory ensheathing cells in the nasal mucosa, moreover, we discovered that Ascl-1 is necessary for GnRH-1 ontogeny. Analyzing human whole-exome sequencing data, we identified a GLI3 loss-of-function variant in a KS individual. Our data suggest that GLI3 is a candidate gene contributing to KS etiology.


Assuntos
Síndrome de Kallmann/genética , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Órgão Vomeronasal/fisiologia , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Movimento Celular/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Bulbo Olfatório/crescimento & desenvolvimento , Mucosa Olfatória/metabolismo , Precursores de Proteínas/metabolismo , Proteína Gli3 com Dedos de Zinco/genética
18.
Mol Ecol ; 28(16): 3656-3668, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332871

RESUMO

The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.


Assuntos
Sinalização do Cálcio , Inativação Gênica , Mamíferos/genética , Mamíferos/fisiologia , Órgão Vomeronasal/fisiologia , Aldeído Oxidase/genética , Animais , Evolução Biológica , Análise Mutacional de DNA , Bulbo Olfatório , Mucosa Olfatória , Proteínas S100/genética , Canais de Cátion TRPC/genética
19.
Neuroscience ; 400: 48-61, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30599273

RESUMO

The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.


Assuntos
Potenciais de Ação , Neurônios Receptores Olfatórios/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Estimulação Elétrica , Teoria da Informação , Masculino , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Condutos Olfatórios/fisiologia
20.
Biosci Biotechnol Biochem ; 83(4): 705-708, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30516446
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...